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Abstract

Synchrosqueezing is a procedure for improving the frequency lo-
calization of a continuous wavelet transform. This research focuses
on using a synchrosqueezed wavelet transform (SWT) to determine
the damping ratios of a vibrating system using a free-response signal.
While synchrosqueezing is advantageous due to its localisation in the
frequency, damping identification with the original SWT is not suffi-
ciently accurate. Here, the synchrosqueezing was researched in detail,
and it was found that an error in the frequency occurs as a consequence
of the numerical calculation of the preliminary frequencies. If this er-
ror were to be compensated, a better damping identification would
be expected. To minimize the frequency-shift error, three different
strategies are investigated: the scale-dependent coefficient method, the
shifted-coefficient method and the autocorrelated-frequency method.
Furthermore, to improve the SWT, two synchrosqueezing criteria are
introduced: the average SWT and the proportional SWT. Finally, the
proposed modifications are tested against close modes and the noise in
the signals. It was numerically and experimentally confirmed that the
SWT with the proportional criterion offers better frequency localiza-
tion and performs better than the continuous wavelet transform when
tested against noisy signals.
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1 Introduction

Damping is a mechanism that is present in every real vibrating structure. It
originates as a combination of external factors, the properties of a structure
and from the material itself. Identifying the damping together with iden-
tifying the natural frequencies is a key element in the characterization of a
system.

The continuous wavelet transform (CWT) has been used as a tool for
damping identification and has proven to be very useful, even for noisy
signals [1, 2, 3, 4]. For the extraction of the modal parameters, the CWT
has been continuously studied and improved, e.g., with the introduction of
the Gabor wavelet [5], and studies of the edge-effect and time-frequency
localization [6, 7]. To improve the damping identification, different methods
related to the CWT have been proposed, e.g., [8]. The CWT is being used for
the damping identification in various different applications, e.g., on bladed
disks [9], the damping of bridges [10] and in ocean engineering [11].

In order to improve the wavelet transform, synchrosqueezing has recently
been proposed [12, 13]. Synchrosqueezing adds to an existing transform by
examining the local oscillations with respect to time. Based on this, syn-
chrosqueezing re-allocates each value of the original transform to a new
frequency on the time-frequency plane. The resulting time-frequency repre-
sentation is thus sharpened in the frequency domain.

The synchrosqueezed wavelet transform (SWT) aims to combine the ad-
vantages of the CWT with the sharpening provided by the synchrosqueezing;
it has been applied to a variety of different problems, often in the field of
medicine [12], but also in the field of seismology [14].

In the field of mechanical engineering, the SWT has been introduced
for the fault diagnosis of gearboxes [15, 16, 17]. Recently, generalized syn-
chrosqueezed transforms have been introduced for bearings defects detection
and diagnosis [18, 19]. A comparison between the wavelet transform and its
synchrosqueezed version was made in [20], where according to the authors,
more visually appealing pictures appear to be the only advantage of syn-
chrosqueezing. The synchrosqueezed wavelet transform has also been used
for damping identification [21], being applied to seismic signals, where it has
been compared to the wavelet and Hilbert-Huang transforms. It was found
that although the SWT produces sharper representations, when identifying
damping, it is less stable than the CWT-based approach.

In Section 2, the theoretical background to the continuous wavelet trans-
form and synchrosqueezing are presented, followed by a method for damping
identification based on the logarithmic decay of the envelope. In Section 3,
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some sources of error in the identification of damping with synchrosqueez-
ing are addressed. The next Section explores the effects of synchrosqueezing
on signals with closely spaced modes. Section 5 focuses on the use of the
SWT for damping identification. For better results, two modifications are
proposed. Section 6 offers numerical experiments as well as an application
involving real data. The last section draws the conclusions.

2 Theoretical background

In order α to perform a wavelet transform, a mother wavelet function ψ(t)
is needed. According to Mallat [22], such a function must have a zero mean
value Eq. (1) and has to be normalized Eq. (2).∫ +∞

−∞
ψ(t) dt = 0 (1)

‖ψ(t)‖2 =

∫ +∞

−∞
|ψ(t)|2dt = 1 (2)

The wavelet function ψ(t) has to be translated in time by u and scaled by
s > 0 to obtain a family of wavelet functions ψu,s(t):

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
. (3)

The continuous wavelet transform of a function x(t) can now be defined as:

Wx(u, s) =

∫ +∞

−∞
x(t) ψ∗u,s(t)dt, (4)

where ψ∗u,s(t) denotes a complex conjugate of the wavelet ψu,s(t). The scale
s and the angular velocity ω(s) are related via the frequency modulation η
as: ω(s) = η/s.

In this paper, the Gabor wavelet will be used:

ψGabor(t) =
1

(σ2 π)1/4
e−t

2/(2σ2) ei η t. (5)

The parameter σ denotes the width of the Gaussian window of the Gabor
wavelet. If σ = 1 is chosen, the Gabor wavelet becomes identical to the
Morlet wavelet. Choosing appropriate values for the parameters σ and η is
critical to the transform; they have to be small enough to reduce the edge
effect and the time spread, yet large enough to reduce the frequency spread.
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Synchrosqueezing, as defined by Daubechies et al. [12], requires three
steps. The first step is to calculate a CWT for the (discrete) time u and
the (discrete) scale s according to Eq. (4). In the second step, a preliminary
frequency ω(u, s) is obtained from the oscillatory behaviour of Wx(u, s) in
u:

ω(u, s) = −i(Wx(u, s))−1 ∂

∂u
Wx(u, s). (6)

In the third step the information is transformed from the time-scale plane to
the time-frequency plane. Each value of Wx(u, s) is re-assigned to (u, ωl),
where ωl is the frequency that is the closest to the preliminary frequency of
the original (discrete) point ω(u, s). This is formally written in Eq. (7):

T (u, ωl) = (∆ω)−1
∑

sk:|ω(u,sk)−ωl|≤∆ω/2

Wx(u, sk) s
−3/2
k ∆s, (7)

where ∆ω denotes the width of each frequency bin ∆ω = ωl − ωl−1 and
equivalently for ∆s = sk − sk−1.

2.1 Damping identification

For a MDOF system, where N denotes the number of modes, an impulse
response can be given as the sum of the responses for each mode:

x(t) =
N∑
i=1

A0,ie
−ζi ω0,i t cos(ω0,i

√
(1− ζ2

i ) t+ ϕi), (8)

where ζi is the damping ratio of the i-th mode, ω0,i is the natural angu-
lar velocity, A0,i is the i-th mode’s magnitude and ϕi is the phase shift.
From a given signal, it is only possible to obtain the damped angular ve-
locity ωdi = ω0,i

√
1− ζ2. Since the ζ is usually very small, the natural and

the damped angular frequency are very close, so they can be substituted.
Instead of solving the whole MDOF system at once, it can be decoupled
into single modes, so each i-th part of Eq. (8) can be solved separately.
As shown by Staszewski [1] for the Morlet wavelet and adopted in [5] for
the Gabor wavelet, the damping ratio can be estimated from the slope of a
semi-logarithmic plot as:

ln

(
2|Wx(u, s(u))|
(4π σ2 s(u)1/4

)
≈ −ζ ωd u+ ln(A0). (9)

where s(u) in Eq. (9) denotes the ridge. The ridge is a curve in (u, s) that
follows the local maxima of wavelet transform modulus at each u. The val-
ues that correspond to the ridge are called the skeleton and are denoted

4



as Wx(u, s(u)). Different approaches to ridge detection have been intro-
duced [23, 1], which are based on amplitude, phase or the shape of the
ridge. Because the SWT uses the phase information to rearrange the co-
efficients and can thereby slightly change the shape of the ridge, a simple
amplitude method which searches for the local maximum of a transform was
used in this study.

A similar approach as that developed for damping identification using
the CWT will be applied here for the damping identification using the
synchrosqueezed CWT. It must be noted that when applied to the syn-
chrosqueezed CWT, the last part of Eq. (9) is no longer equal to ln(A0).

3 Frequency shift

After synchrosqueezing a CWT, the extreme of the amplitude might shift
to lower frequencies. This shift is dependent on the time discretization and
originates in a numerical calculation of the preliminary frequencies in Equa-
tion (6). This section will present the mathematical background and the
limits for such a frequency shift, as well as three methods for its reduction.

Let us assume a harmonic signal with a constant amplitude A0 and a
constant angular frequency ω0:

x(t) = A0 cos(ω0t) (10)

It has been shown [5] that for this kind of signal the CWT can be calculated
analytically. Focusing on the translation u the analytically defined CWT is:

Wx(u) = Ke−iuω0 (11)

where K is a constant in time, dependent on the scale K = K(s). The
same equation can also be written as the sum of the real and imaginary
components as:

Wx(u) = K cos(uω0)− iK sin(uω0). (12)

The next step of the synchrosqueezing requires us to obtain the preliminary
frequencies according to Eq. (6). Since the Wx is a complex function, the
partial derivative is calculated as the sum of the partial derivatives of its
components. According to [24], for every function of shape f(x) = a(x) +
ib(x) the derivative can be calculated as:

∂f

∂x
=
∂a

∂x
+ i

∂b

∂x
, (13)
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Let us focus on the real part of the partial derivative of Wx(u) only:

Re

(
∂Wx(u)

∂u

)
Analit

= −Kω0 sin(uω0). (14)

Similarly, if the derivation is numerical, by using the central difference
scheme of the second order:

∂f(x)

∂x
=
f(x+ h)− f(x− h)

2h
, (15)

the real part of Eq. (12) can be obtained as:

Re

(
∂Wx

∂u

)
Numer

=
K cos((u+ ∆u)ω0)−K cos((u−∆u)ω0)

2∆u
(16)

Re

(
∂Wx

∂u

)
Numer

= −K sin(uω0) sin(∆uω0)

∆u
(17)

As the numerical result Eq. (17) is not equal to the analytical Eq. (14), their
ratio is:

Re
(
∂Wx
∂u

)
Numer

Re
(
∂Wx
∂u

)
Analit

=
sin(ω0∆u)

ω0∆u
. (18)

A similar procedure can be repeated for the imaginary part, resulting in:

Im
(
∂Wx
∂u

)
Numer

Im
(
∂Wx
∂u

)
Analit

=
sin(ω0∆u)

ω0∆u
. (19)

Since the ratio is the same for both parts of the complex number, according
to Eq. (6), the same ratio also holds for the preliminary frequency:

ω(u, s)Numer
ω(u, s)Analit

=
sin(ω0∆u)

ω0∆u
. (20)

The significance of Eq. (20) is in the error estimation of the preliminary
frequency, which arises from the numerical differentiation. When the time
interval ∆u is close to zero, the ratio Eq. (20) comes close to 1 and the error
vanishes. However, if the time discretization is not sufficiently dense, then
the ratio Eq. (20) is less than 1 and an unwanted frequency shift can arise.
As is clear from Eq. (7), synchrosqueezing relies on the reassignment of the
CWT coefficients sk → ωl when the following criterion is fulfilled:

|ω(u, sk)Numer − ωl| ≤
ωl − ωl−1

2
. (21)
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The numerically obtained ω(u, sk)Numer is always smaller than the real
ω(u, sk)Analit. In the process of synchrosqueezing, the criterion Eq. (21) al-
ways rearranges the coefficients in time-frequency plane to a new frequency
which is the closest to the ω(u, sk)Numer. This way, the error of numerically
obtained ω(u, sk)Numer gets expressed as a shift to lower frequencies. The
admissible error may be a subject for individual application, but in general
we define the maximum admissible error as half of a frequency bin or ∆ω/2.
Consequently, the frequencies that correspond to the midpoint of a bin are
shifted to the lower boundary of the same bin. With a constant bin width
of ∆ω, the critical ratio occurs at the highest frequency bin:

ω(u, s)Numer
ω(u, s)Analit

=
ωmax + ωmax−1

2ωmax
(22)

sin(ω0∆u)

ω0∆u
= 1− ∆ω

2ωmax
(23)

A second-order Taylor series is applied to the left-hand side of Eq. (23) to
obtain:

1− (ω0∆u)2

6
= 1− ∆ω

2ωmax
. (24)

The terms can be rearranged in order to express the maximum value of ∆u,
which yields a frequency shift that is smaller than or equal to ∆ω/2:

∆u =
1

ω0

√
3 ∆ω

ωmax
. (25)

A larger ∆u than defined in (25) results in the frequency shift:

ωshift = ωAnalit − ωNumer. (26)

Considering the ratio Eq. (20), the expected frequency shift for a given time
resolution is

ωshift =
ω0 ∆u− sin(ω0 ∆u)

∆u
. (27)

3.1 Correction of a frequency shift

As seen from Eq. (25), the required ∆u is inversely proportional to the fre-
quency of a signal. Since ∆u = Tsig/N , where Tsig is the time of the signal
and N is the number of sampling points. ∆u can be decreased if sampling is
the sampling frequency is increased. To completely annihilate the frequency
shift, the sampling frequency as high as 100 times the observed frequency
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might be required. This is far beyond the Nyquist theorem or physical re-
quirements for damping identification and thus redundant. Because of this,
we suggest numerical approach to reduce the shift. We suggest calculating
ω(u, s)Numer with a larger ∆u than predicted in Eq. (25), thus eliminating
any redundancy. This yields a predictable frequency-shift error Eq. (20)
that will be corrected with the introduction of the coefficient C(s):

ω(u, s)Corrected = C(s) ω(u, s)Numer. (28)

To completely eliminate the frequency shift, the coefficient would have to
be equal to:

C =
ω0∆u

sin(ω0∆u)
. (29)

The problem with defining C(s) is its dependence on the unknown ω0.
For this reason, we are proposing three different approaches: a) a scale-
dependent coefficient, b) a shifted coefficient and c) an autocorrelated fre-
quency.

The scale-dependent coefficient method suggests calculating a coef-
ficient that is dependent on the scale s:

C1(s) =
η
s∆u

sin(ηs∆u)
. (30)

Here, it is assumed that ω0 = η/s, which corresponds to the ridge of the
CWT. This means that for the s on the ridge, the value of C1(s) is exactly
as desired. For the points that do not correspond to the ridge, the error
of C1(s) increases the further away from the ridge we get, but at the same
time the amplitude of the CWT at these points decreases, leading to good
results (shown later). The frequency shift at the maximum vanishes, and the
resulting synchrosqueezed transform is spread over a few frequency bands.

The shifted-coefficient method is based on the idea that according to
Eq. (20) the approximation of ω0 is known: ω(u, s)Numer. This estimation
is smaller than ω0. The resulting coefficient C2 calculated with ω(u, s)Numer
is also smaller than desired. Therefore, the frequency shift is not entirely
eliminated, but is significantly reduced:

C2 =
ω(u, s)Numer ∆u

sin(ω(u, s)Numer ∆u)
. (31)

8



The autocorrelated-frequency method is based on the fact that for
a simple harmonic signal Eq. (10), the preliminary frequency equals the
frequency of the signal: ωAnalit(u, s) = ω0 [12]. This fact, combined with
Eq. (28) and Eq. (29), results in:

ω0 =
ω0 ∆u

sin(ω0 ∆u)
ω(u, s)Numer. (32)

In this case, there is no need for a correction coefficient. The ω0 can be
expressed directly and is therefore equal to the sought frequency ω0 =
ω(u, s)corrected. The sought frequency can be expressed as:

ω(u, s)corrected =
sin−1(ω(u, s)Numer ∆u)

∆u
. (33)

4 Close Modes

Close modes are a common occurrence in vibrating systems with many de-
grees of freedom. They often arise as a result of symmetry or near symmetry
in a given structure. In the case of close modes, the identification of the cor-
rect modal parameters can prove to be difficult.

On the one hand, as shown by Simonovski and Boltežar [25], the fre-
quency spread of a Gabor wavelet can be expressed as:

σωu,s =
1

s

1√
2

1

σ
(34)

So for smaller parameters s and σ, the wavelet transform is spread over
different frequencies, and in the case of noisy signals, the identification of
close modes from a scalogram is made difficult.

Synchrosqueezing a wavelet transform nullifies the CWT’s frequency
spread by allocating the coefficients to a single frequency line. In this way,
even when dealing with very close frequencies and using smaller parameters,
σ and η, the SWT enables us to correctly identify the modes as separate.

The other problem occurring with close modes is beats. A signal with
two harmonic frequencies Eq. (35) of constant and same amplitudes can also
be seen as a signal of a single, average frequency with varying amplitude,
see Eq. (36).

x(t) = A0 cos(ω01 t) +A0 cos(ω02 t), (35)

x(t) = 2A0 cos

(
ω01 − ω02

2
t

)
cos

(
ω01 + ω02

2
t

)
, (36)
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Since the damping ratio is estimated from the logarithmic decline of the
amplitudes along the ridge Eq. (9), any oscillation on the ridge makes the
identification of the damping ratio less reliable, so beats must be avoided.

When calculating the SWT, the apparent time-wise oscillation of the
amplitude introduced by the beats proves to be even more problematic than
with the CWT. The re-allocation criterion used for the synchrosqueezing
depends on the time-wise derivative of the CWT and the oscillation of the
beats makes the criterion less reliable. Even in cases where the beats are
negligible when using the CWT, the beats are expressed and this distorts
the identification with the SWT.

Because of the aforementioned sharpening, the SWT is good for deter-
mining whether a given signal consists of a single mode or of two closely
spaced modes. However, if the two modes are sufficiently close, the beating
might occur. Beating greatly diminishes the SWT’s capability of reliably
extracting the damping ratio. For damping identification on signals where
close modes might produce beating, the CWT is preferred to the SWT.

5 Modification of synchrosqueezing for damping
identification

As shown by Montejo and Vidot-Vega [21], synchrosqueezing a CWT yields
a sharper time-scale representation, but, on the other hand, when identifying
damping ratios it is less stable than when using coefficients of the CWT.

The main reason for the instability of such an identification is the rear-
rangement of the individual CWT coefficients. In the case of a pure harmonic
signal without any noise Eq. (10), all the values from the time-frequency
plane are squeezed into a single line. But when the noise is taken into
account, the squeezing becomes less stable. Instead of a single line, the syn-
chrosqueezed transform is spread over several frequencies. However, unlike
with the CWT, this frequency spread is not constant with time. For damp-
ing identification, the ridge and its skeleton have to be identified. Because
of the re-assignment in synchrosqueezing, at different points along the ridge,
a different number of CWT coefficients might have been summed into the
ridge. Therefore, the amplitude of the skeleton is no longer proportional
only to the amplitude of the vibration, but it is also dependent on the sy-
chrosqueezing. In this way the noise error is increased and this represents
the main reason why the synchrosqueezing CWT is less reliable than the
CWT alone when dealing with noisy signals [21].

The identification procedure in Sec. 2.1 would be more reliable if the re-
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assigning criterion in Eq. (7) was more stable. As described by Daubecies
in [13], synchrosqueezing can be defined with an arbitrary reassigning rule.
From the nature of a signal in a free-response dynamic system we know that
each mode will change its amplitude, but its angular frequency will remain
almost constant. Because of this, we developed two criteria that are not
dependent on time: a) the average SWT and b) the proportional SWT.

The Average SWT criterion uses the average preliminary frequency
ωavg(s) instead of the preliminary frequency ω(u, s). The average prelimi-
nary frequency is a time-wise average of ω(u, s):

ωavg(s) =
1

Nu

∑
ui

ω(ui, s). (37)

Nu is a number of points in time. The synchrosqueezing is then carried out
in the same way as originally, just with the new criterion:

AverageT (u, ωl) = (∆ω)−1
∑

sk:|ωavg(sk)−ωl|≤∆ω/2

Wx(u, sk) s
−3/2
k ∆s. (38)

The proportional SWT criterion is based on a similar idea, but rather
than calculating a criterion and rearranging the entire frequency line into a
single new frequency line, each line can be spread and rearranged into more
than one different frequency bin.

Firstly, the preliminary frequencies are calculated following Eq. (6).
Secondly, focusing on a single frequency line sk, the number of points Nu

in time is counted. For each line sk, the number of points Nl that correspond
to each line l is counted:

Nu = |{u ∈ sk}|, (39)

Nl = |{u ∈ sk; |ω(u, sk)− ωl| ≤ ∆ω/2}|. (40)

Thirdly, αprop,l(sk) is calculated as a fraction of the Nl number of points
that correspond to any given frequency line and the number of all the points
in time Nu:

αprop,l(sk) =
Nl

Nu
(41)

.
Finally, each element from a given line sk is rearranged to the other lines

in proportion to αprop,l(sk). For this, the synchrosqueezing is carried out

11



like originally, except that the summation is carried out over all frequencies
and there is an added coefficient αprop,l(s)

ProportionalT (u, ωl) = (∆ω)−1
∑
sk

αprop,l(s)Wx(u, sk) s
−3/2
k ∆s. (42)

6 Experiments

6.1 Frequency shift

To illustrate the problem and possible solutions from Section 3, a simple
numerical experiment is carried out. A pure harmonic signal of a shape
x(t) = A0 cos(ω0t) is generated.

Table 1: Parameters of a signal and CWT
Variable Description Value

A0 Amplitude 1

ω0 [rad/s] Angular frequency 125.6

t [s] Time 0 - 4

N Number of discrete points 500

σ Parameter σ 0.05

η [rad/s] Frequency modulation 250

f [Hz] Frequency range 10 - 25

∆f [Hz] Frequency resolution 0.33

Given the parameters from Table 1 and according to Eq. (25), the time
resolution should be ∆u = 0.0009 s. To demonstrate the frequency shift and
the effect of different correctional approaches from Section 3, a significantly
larger ∆u = 0.008 s is used. The expected frequency shift according to
Eq. (27) is 3.2 Hz.

The results are presented in Figure 1, as a plot of a synchrosqueezed
wavelet transform. Figure 1a) shows a standard transform that results in a
frequency shift due to an inappropriate ∆u. An original signal of 20 Hz is
shifted to approximately 17 Hz.
Figure 1b) of the picture represents the same procedure, with an added
attempt to eliminate the frequency shift with the use of the scale-dependent-
coefficients correction Eq. (30). The result shows that the frequency error
almost entirely vanishes, but at the same time, the resulting transform is
spread over neighbouring frequencies.
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Figure 1c) shows the effect of the shifted-coefficient method Eq. (31). As
predicted, the frequency shift is reduced, but not eliminated. There is no
effect on the sharpness of the result.
Figure 1d) shows the autocorrelated approach Eq. (33). This approach yields
the best results, as it completely eliminates the frequency shift and does not
affect the frequency spread of the transform.

10
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Figure 1: Frequency shift: a) without correction, b) scale-dependent coeffi-
cients, c) shifted coefficient, d) autocorrelated frequency

6.2 Noisy signals

This section aims to demonstrate the robustness of different methods when
dealing with noisy signals. In order to obtain the different levels of noise
while examining the same signal, the experiment will be carried out numer-
ically. A signal is defined as:

x(t) = A0 cos(ω0

√
(1− ζ2)t) e−ζ ω0 t +B0ONoise (43)

The parameters used for this transform are given in Table 2.
ONoise denotes the noise of the uniform distribution added to the signal,

whereas B0 is used to change its amplitude. This simulates the different
levels of white noise that is often unavoidable when setting up an experiment.
To describe the amount of noise, the signal-to-noise ratio (SNR) is used as
defined in Eq. (44).

SNR = 20 log10

(
σsignal
σnoise

)
(44)
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Table 2: Parameters of a signal 43 and CWT
Variable Description Value

A0 Amplitude of signal 1

B0 Amplitude of noise 0.2 - 7

ω0 [rad/s] Angular frequency 125.6

t [s] Time 0 - 2

ζ Damping ratio 0.02

N Number of discrete points 600

σ Parameter σ 1.0

η [rad/s] Frequency modulation 31,4

f [Hz] Frequency range 15 - 25

∆f [Hz] Frequency resolution 0.1

∆u [s] Time resolution 0.0033

16
18
20
22
24

CWT

0 1 2 3 4

16
18
20
22
24

SWT

averaged SWT

0 1 2 3 4
time [s]

fr
e
q
u
e
n
cy

 [
H

z]

proportional SWT

Figure 2: Time-frequency representations of the signal with SNR = -5 db
using different transforms

σsignal is the standard deviation of the signal, and σnoise is the standard
deviation of the noise. The standard deviation of a simple cosine wave
with a constant amplitude equals: σ(A0 cosωt) = A/

√
2. For a given signal
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Eq. (43) the standard deviation at time t equals:

σsignal =
A0 e−ζωdt

√
2

(45)

It is assumed here that the origin of the noise is not directly dependent on
the vibration itself, i.e., although the amplitude of the signal decreases over
time, the amplitude of the noise remains unchanged.

σnoise =
B0√
12

(46)

Because of this, the SNR increases over time. To obtain a single number,
the average standard deviations of the signal and the noise are computed.

Because of the random nature of the added noise, 3000 signals of the
form Eq. (43) are generated across different levels of noise. Each of them
was then transformed with the CWT, the SWT, the averaged SWT and
the proportional SWT. The damping ratio was extracted as described in
Section 2.1. The extracted damping ratio is compared to the theoretical
one from Table 2 and a realative error is calculated err = |ζtheoretical −
ζextracted|/ζtheoretical. The relative errors of the identified damping ratios
are presented in Figure 3.

The results are consistent with the findings of [21] in that the pure SWT
performs worse than the CWT at each noise level. Furthermore, it can be
seen that the averaged SWT criterion and the proportional SWT criterion,
as proposed in Section 5, do not exhibit the same problem as the SWT. The
averaged SWT is as robust as the CWT for all levels of noise. At low and
high levels of noise, the proportional SWT performs as well as the CWT,
whereas for a SNR of approximately 0, the proportional SWT yields results
with smaller errors than the CWT.

6.3 Application to real data

Both proposed modifications of the synchrosqueezed wavelet transform have
also been applied to real data, where the CWT is used as a benchmark.
The data comes from the free response of a 500-mm-long steel beam with a
cross-section of 15 x 30 mm2. Details of the setup can be found in [5]. The
frequencies and the damping ratios for the first six natural frequencies were
sought. The parameters for the frequencies and the damping identification
can be found in Table 3.

The result for the first six natural frequencies and the corresponding
damping ratios obtained with the CWT, the SWT with the averaged crite-
rion and the SWT with the proportional criterion are presented in Table 4.
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Figure 3: Relative errors of damping ratios identified from noisy signals
using different transforms

Table 3: Parameters for different natural frequencies

Variable

Natural freq. 1 2 3 4 5 6

N 300000 300000 300000 8192 8192 8192

σ 1.0 1.0 1.0 1.0 1.0 1.0

η [Hz] 25 100 200 300 500 500

f [Hz] 270-330 820-880 1600-1700 2700-2800 4000-4100 5550-5650

∆f [Hz] 1 1 1 1 1 1

t [s] 0 - 1.1 0 - 1.1 0 - 1.1 0 - 0.125 0 - 0.125 0 - 0.125

∆u [s] 3.3e-5 3.3e-5 3.3e-5 1.5 e-6 1.5 e-6 1.5 e-6

All the methods identified the same six natural frequencies, with the dif-
ferences not exceeding 0.5 %. The identified damping ratios were also very
similar. The damping ratios for the fifth and sixth natural frequencies are
higher when identified using the SWT with modified criteria than when
identified by the CWT. Nevertheless, the differences are smaller than the
confidence interval usually associated with the damping identification of real
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structures.

Table 4: Identified natural frequencies and damping ratios

Natural CWT avg SWT prop SWT CWT avg SWT prop SWT
freq. freq. [Hz] freq. [Hz] freq. [Hz] ζ ζ ζ

1 310 310 310 1.29 e-4 1.29 e-4 1.29 e-4

2 849 849 849 1.78 e-4 1.78 e-4 1.78 e-4

3 1652 1651 1652 3.91 e-4 3.91 e-4 3.91 e-4

4 2749 2749 2749 9.30 e-4 9.32 e-4 9.32 e-4

5 4059 4054 4054 4.54 e-4 4.73 e-4 4.72 e-4

6 5590 5565 5566 6.32 e-4 7.21 e-4 6.75 e-4

7 Conclusion

When analyzing a signal with the CWT, a trade-off between localizing the
signal in time and localizing it in terms of frequency is always present.
With synchrosqueezing, a signal is always localized in frequency and the
aforementioned trade-off no longer poses a challenge. Therefore, smaller σ
and η can be used, which improves the time localisation and reduces the
edge effect, while at the same time maintaining the frequency localization.

When calculating the SWT, calculating the preliminary frequencies is
critical. We have shown that when calculating the preliminary frequencies
using the central difference scheme, an error is obtained that shifts the SWT
to lower frequencies. Three methods for correcting this shift are shown,
of which the autocorrelated method works the best and nullifies the shift
completely.

In the case of close modes, the SWT can help to distinguish between
a single and two adjacent frequencies. When assessing close modes, beats
may appear, which distorts the scalogram. In comparison to the CWT, the
SWT is far more susceptible to beats, which makes the SWT less suitable
for close-modes identification.

To deal with the weaknesses of the SWT in cases of close modes and noisy
signals, two modifications to the SWT are proposed. Both are designed for
constant frequencies of oscillation and are based on the time-wise averaging
of the re-allocation criterion.

To validate the proposed modification, a numerical example was carried
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out. It was shown that in the case of noisy signals, both the proportional
and the averaged SWT perform better than the SWT, and as well as the
CWT. In the region around SNR = 0 dB, the proportional SWT yields
better results than the CWT.

Finally, the proposed modifications were tested on a real signal of the
vibration of a uniform beam; they were consistent for both methods as well
as for the CWT.
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[6] Miha Boltežar and Janko Slavič. Enhancements to the continuous
wavelet transform for damping identifications on short signals. Me-
chanical Systems and Signal Processing, 18(5):1065–1076, 2004.

[7] Thien-Phu Le and Pierre Argoul. Continuous wavelet transform for
modal identification using free decay response. Journal of sound and
vibration, 277(1):73–100, 2004.
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